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In this paper we obtain an exact solution of the problem of diffraction
of a transient plane elastic wave, with no resistance, propagated in
three-dimensional space and striking against an edge in the form of a
half-plane. The problem is scolved by the method of functional-invariant
solutions of V.I. Smirnov and S.L. Sobolev.

1. Consider the diffraction picture due to the motion of a plane
elastic wave in space (x, y, z), which is occupied by a homogeneous iso-
tropic elastic medium and in which a cut in the form of the half-plane
y = 0, x > 0 has been made; the edge of the cut is fixed, i.e. the elastic
displacement is equal to zero on this half-plane. The analogous diffraction
problem for acoustic waves in a fluid was solved by Sobolev in [1; p.A14].

It is known (see [1; pp.471-473]) that if there are no external forces,
the displacement vector (u, v, w) can be written in the form

(w,v, w) = grad ¢ 4 rot $ (1.1)
where the scalar potential ¢ and the vector potential ¢ = (Ql, ) ,g@
satisfy the equations

% 9% % | 0% 8%y, *Y;  atYy 9%, ]
‘= tagpta VawmmamTaptas (=123 (1.2

when 1/a and 1/b are the velocities of the longitudinal and transverse
waves, respectively., On the fixed boundary (in our case on both siles of
the half-plane y = 0, x > 0) the boundary conditions

u=90, v=0, w=0 (1.3)
hold.

It is required to investigate the diffraction picture resulting from
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the motion of the plane longitudinal wave
cp(t,x,y,z)::f(i——czmclx—%—c?y), (;}({’x'z!z):(} (1.4)

where f(s) = 0 for s ¢ 0. The diffraction problem of the plane transverse
wave 1s reducible to three diffraction problems as follows:

J =g =¢3=0, =1t —cz—T + cYy)
2)g=¢;=¢; =0, Gy = [2 (t—cz—cZ+cy)
Y= =¢p =0, $3=J3 (t —cz-—cx+ oY)

Each of these three problems is solved by the same method as the
diffraction problem of the wave (1.4). We shall, therefore, confine the
discussion to the solution of the diffraction problem for waves of the
form (1.4}, We shall assume that ¢ > 0 in (1.4), since the case ¢ < 0
reduces to that of ¢ > 0 if z is replaced by — z and the case ¢ = 0 is
the plane problem* treated previously in [2].

At each instant of time t the front of the incident wave is a plane
intersecting the axis Oz at the point z = t/c. This point is the vertex
of the cone t ~ cz > [ (a? ~ ¢Z)(x2 + y9 112 occupied by the diffracted
waves (analogous to [1; p. 615] ).

In the exterior of the cone there are only plane waves: the incident
wave (1.4) and the two waves (the longitudinal and the transverse) re-
flected from the fixed boundary. At arbitrary t = t, the picture of the
fronts of the wave in the plane section z = z, is the one given in Fig.1
for t > cz, (if t < czy, then the front of the wave in the section con-
sidered has not yet reached the cut).

It is sufficient to solve the problem for the case

f(s)=0 for s<{0, f(s)=s for s>0 (1.5)

in (1.4), since an arbitrary wave of the form (1.4) can be obtained by
superposition of such waves,

2. We introduce the notation

* It can be verified that if we put ¢ = 0 in the solution obtained in
this paper and then differentiate the solution with respect to t (inm
order to pass from the initial conditions of the form (1.4) considered
here, where f(s) = s for s > 0, to the final conditions of {2]. where
f(s) = 1 for s > 0), then the solution of [2] is obtained.
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a12=a2—62, b12—b2—cz
do o9 a9
Uo = 5> v":t)_y—’ Wo = =~ 2.1
_8Ys 9, 0y s _ 8y 3
Ui =5y — oz Sl PR P W= 5 " By

By (1.1) we have ("o' vy, w ) + (u,, v,, wl) = (u, v, w). In analogy

with [ 1; p. 615] we shall seek a solution depending only on the three
variables x, y, t, =

, = t = cz. From (1.2) it follows that each of the func-
tions uy, vy, Wy satisfies
%uy 0%u, 82110
2 -
a, 9.2~ 9z® + 57 (2'2)
and that each of the functions U, vy, Wy satisfies
62u1 6214, 82u1
2 — it 2.3
by dty? ox? + dy? (2-3)
From (2.1) we obtain
6uo v, dug __ Owy vy dwrg duq O Jwny
3y oz ‘T Ca— ey = Tay=Cer (&4

The boundary conditions (1.3) can be written as

uy+u, =0, 9,42, =0, wy+w =0 fory=0 2>0 (2.5

Noting that (1.2) and (1 4) imply that ¢? + ¢, 2 a? and putting
= k, we obtain 022 = — k2. It now follows from %l 1), (1.4) and
(i 5) that

Uy =V, =Wy =u; =w, =0, =0 for 5, kx4 Va2 kty<0 (2.6)
w=v,=w =0, u,=—k v,=Va?:—-k, w,=—c (2.7)
for &H1—kx+Val2—ky>0

For t, > 0 we have the picture shown in Fig. 1. Obviously, (2.6) holds
in the regions MKx and M,C,AK x (before the wave front), and (2.7) holds
in the region to the left of the curve MKCA, CM (that 1is, those places
on the front of the incident wave not yet reached by the reflected and
diffracted waves). The regions ACK and AE DK contain the waves reflected
from the plane boundary Ox in accordance with the boundary conditions

(2.5).
In the usual way (see [ 2; p. 689]) we obtain
Uy=7p, Vy=¢, wWy=r in the region ACK

U, =—p, v ==—q, wW;=-—rin the region AEDK
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2k Var— kR Vb2—k? 2+ ) VaE— R
p=- F (k) l A 5 - (2.8)

R V,,‘z_},‘.(zkl)/ble_kz’ Fhy=k 4+ Va— kY bt —k

An arbitrary function ®(y ) can be written as half the ?UT of the even
function ®* (y) = ®(y ) + ® (- y) and the odd function ®~ Y’/ h & (y) =
® (- y). We shall denote by uoo, v ¥, woo, uio, v, % wlo the even func-
tions of y

UOO(ZI’ z, y):uo(tl’ z, y)+uo (tly z, ‘“y)
Yo' (& y) =0, (s 2, Y) + 05 (1y, 2, —)

etc. and by uo*, vdo, wo*, ul*, vlo, wl* the odd functions of y

e (b % ¥) = gty @ y) — uo(tyy & —Y)

etc. where u., ..., w, is a solution of the problem (2.1)-(2.7). Tt 1is
obvious that u, = 1/2%”0 + ug *) etc. and that each of the systems of
functions uoo, v, O, v,9, w9 and uO , va Y, w ¥, oul ¥, v1 s w1
satisfies (2.2), (2 33 (2 4) and the boundary condition (2.5),

We shall first find the functions u,’, voo, woo, ulo, vlo, wlo. It
follows from (2.6) and (2.7) that these functions are homogeneous of
order zero in t,, x, y for t, < 0, Therefore, the solution will be homo-
geneous for t > " as well, According to [ 1l; p. 514] such a solution can
be sought in the form

uOc - Re Lfo (80), voo = Re VO (90), woo = Re LVO (60)

° (2‘9)
u,°=ReU, (9,), v,° = ReV,; (0)), w,° = Re W, (8))
where U, Vb, cee, W& are analytic functions of the complex variables
8 = o + itg, 0, =0+ it
Lz Vii—ap? (=% + 4") yVii—b (@t ¢
c o WEHEER WG g 0

From (2.4) we obtain
Var—0U (0) =0V, (0),  cUy (8) = W' (B)
V(8 = Var —BW, () 2.11)
60U, (0) + Vb2 — 82V, (0) + W' (6) =0
The radicals are to be considered continuous for Im 6 » 0 and positive
for ~ a, < g < a,.

Because the functions uoo, wy , Wy, w,~ are even in y and the functions
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voo' v10 are odd in y, it is sufficient to consider the functions U;(6),
.., W. (@) only in the upper half-plane. In the same way as in [2; Sec-
tion 21] we obtain the following conditions which the functions UO(O),
cees Wl(G) must satisfy on the real axis:

ImUy (0) =0, ReVy(0)=0, ImW, () =0 for — = <t <—a, (2.12)

ImU, (®)=0, ReV;(0)=0, ImW,(§)=0for—oe<b<—b  (213)
ReU, (8) =—2k, ReV,(8) =0, ReW, (8) = — 2¢ for —a1 <6 <k (2.14)
Re U1 (e) =0, Re Vl (0) =0, Re VV'I (6] —= (0 for —b, <b <k (215)'

ReU, ) =p, ReVy(0)=¢, ReW,(0)=r '

RelU, )= —p, ReV,(8)=—q, ReW, ()=, ofF<t<a (216)
Re(Uy(8) +U,(9) =0, Re(Vo(0) + V1(6))=0 ‘ o
Re (W, (8) + W, (8)) = 0 for a; <8 <+ o (2.17)

3. We shall find functions UO(H), cers WI(O), which are regular in the
upper half-plane and satisfy (2.11) and also satisfy the boundary condi-
tions (2.12)-(2.17) on the real axis. It follows from (2.12)-(2.17) that
Rel V. (0) + V1(6)] = 0 on the real axis. Therefore,*

Vo(®) -+ V,(6)=0 CRY;

By means of (2.11) and (3.1) we express the functions U, vy, U,
V,” in terms of W,” and W,”. Using also (2.17), we obtain

ReF (0)Wy'(0) =0 when a; <8 < = 00 (F(8) = 02+ ¢ = Va2 — ) b2 — 8?)

(3.2)
From (2.12), (2.14) and (2.16) we obtain
ImWy @) =0 for —o0 <b<—a,
(3.3)
ReW, () =0 for —a; <8 < kandk <0 <aq,
and for 0 = k the function W "(#) has a pole with principal part
Wy O~ L e 34)

=(0—Fk)  wO—Fk F(k

From (3.2) and (3.3) we know arg W,"(6) is wholly on the real axis. In
order to find W,”(6) we construct a function F (0) such that

In view of the considerations at the beginning of Section 3 of [ 2],
we shall seek the simplest particular solution of the problem (2.11)-
(2.17), i.e. a solution with the minimum number of singularities on
the real axis and at infinity.
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by hy
lnFl(B)w—\ﬁg}dt Sarctg

a; ay

VER— 2V 12 —a? dt
12 + ¢? t—6

(3.5)

Then F, () = 1; on the real axis F,(8) = 0, except for the interval
(a,, b,), where arg F,(8) = — arg F(9). Tt now follows from (3.2) and
(3'3) that

Re W' @ VO+ a1 _
ARG

is wholly on the real axis, except at the point # = k, where there is a
pole. Therefore,
Wy (0 Vi+ a B (3.6)

7100 = A =%

From (3.4) we obtain

B = 2e (k24 AV + a;
= mb (k) Fy (k)

The constant A will be determined later. From (2.17) and (2.11) it
follows that

Recl/; = Re0W /' for 0 > a,

From this and from (2.13), (2.15) and (2.1A) it follows that
Re [(cU, (0)— W () Vi, +0] =0 for — o0 <0< = o0 (3.7)

Equations (2.15), (2.16), (2.11) and (2.R) imply that Re (CUi" oW)
is continuous at & = k; hence the function cU - 6”’1' does not have a
pole there. Using (3. 7) we write

iD

BH—=0 0) =
Uy () — Wy ) = L2
From (2.1), (3.1), (3.A), (3.8) we find all six of the required func-

tions

(3.8)

, 0 1 - i0F, (0 B ,
Uy O =Wy )= L (A4 525, U0 =W O+ s
v ,(6) =—V,/ (0 = M(A — m) (3.9)
B A\ 6D
wy (9)~W{F1(0)Va1—-9]/b1 “Gz(A ”’G—k}"ym]

We find the constants 4 and D from the condition of regularity of the
functions U,” and W,” at the point € = ic. to do so, we must put the
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expression in the square brackets in (3.9) equal to zero for 6 = ic, i.e.

F, (i¢) Val—icl/bl—}—ic]/blz—{—cZ(A + ";k)—icD=o

Putting the real part of this expression equal to zero, we find

ic

__ B _Im(F, (ic) Va, —ic Vb, + ic)
A= e 4 A2 (k cl{e (Fy (ic) Va,—ic Vb1+ic)) (3.10)

and putting the imaginary part equal to zero, we find D. We show that the
denominator in (3.10) does not vanish. Indeed, 0 < a, < b, and ¢ > 0 imply
that

—% r<arg(Va,—icVb +ic)<0

and (3.5) implies that
by

, . 1 1
arg Fy (ic) = Im In F)/(ic) < ;‘S ;Im Lt < —Zi
a,

Hence

|arg (Fy (i) V &y — e VB F i0)| < -

and the denominator in (3.10) is not zero. Therefore, the functions U,
.., W* have been determined. Taking (2.14 and (2.15) into account, we

find Uy, ..., W, and then from (2.9) we

v find uoo, e, wlo. In the region BEA (see
e Fig.l), where Ty is imaginary, the functions
gy Moou, vlo, wlo are determined in the same way
,/ 5\‘\? A as the function ! in [2; Section 2; para-
A\ B 0| 874 K z graph 31,
A 31\\ 5,/ grap
£ 4. To find the functions uo*’, vy wl"‘,
we write
M Fig. 1

uy' =RelUy"(8,), ..., w" = ReW," (8)

in analogy with (2.9), where 6, and 6, are the same as in (2.10). The
functions U,*, ..., W.* will satisfy the same relations (2.11), but in-
stead of (2.12)-(2)14} they will satisfy the following boundary conditions:
ReU,(6)=0, ImV,”(8) =0, ReW,<(§)=0for —oo<0<a, (41)
ReU,*(8) =0, ImV,”(6)=0, ReW,"(8) =0 for —oo <0< —5;, (4.2)
ReU,'(8)=0, ReV,(8) =2V a2—i?
ReW, () =0 for—a, <0<k (4.3)
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Conditions (2.15}-(2.17) remain in force for the functions Up*s vens
W,* as well. These conditions imply that

Re(U,"+U,") =0, Re(W,+W;")=0
for - < 0 < =,

Therefore, instead of a single equation (3.1) we obtain two:

UO‘ + Ul. = 07 WO. + Wl‘ = O
The rest of the discussion proceeds as in Section 3 and we obtain
; 4.4)
*r . *r «r F b, — OF, (0 (
W (@) =—W" ()= £U"(0) =— £ U, (6) = LVu=000)

iEVb — 0V a2 —62F, (0)

v gy _ AE (82 + ) Fy (8)
c(0— k) ’ V' (0) =

V‘l 6 —
o ®) c(6—k) Vb, + 6

where the function Fl(e) is the same as in (3.5) and

E— 2Var—RRVbi+k _ 4eVa =B Vb + kFy(—k) (4.5)
= nF (k) F1(k) - 7 (a2 + by + 2c2) :
INloctynnana
29 XIT 1958
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